

520 South 850 East, Suite B3 _ehi, UT 84043 301-847-7722 www.analyticalresource.com nfo@yourqualitylab.com

Client Information

PurHealth RX 14663 S. Heritage Crest Way Bluffdale, UT 84065 USA 801.903.7789

Certificate of Analysis

Sample Information

ARL ID: 683741 Date Received: 6/20/2023 Date Tested: 6/23/2023 Description: 7 Energy Shot 2oz Lot#: 23180

Results

Analysis	Method	†MDL/LOQ	Specification	Results	UOM	Lab ID
Complete Micro Profile Pseudomonas	USP, AOAC					_{i:} 1
Total Plate Count	USP <2021>	10	Record Only	None Detected	cfu's/g	1
Coliforms	AOAC 991.14	10	Record Only	None Detected	cfu's/g	1
E. coli	USP <2022>	Absent	Record Only	Absent	cfu's/10g	1
Staphylococcus aureus	USP <2022>	Absent	Record Only	Absent	cfu's/10g	1
Salmonella	USP <2022>	Absent	Record Only	Absent	cfu's/10g	1
Pseudomonas aeruginosa	USP <62>	Absent	Record Only	Absent	cfu's/g	1
Yeast	USP <2021>	10	Record Only	None Detected	cfu's/g	1
Mold	USP <2021>	10	Record Only	None Detected	cfu's/g	1

Method Detection Limit (MDL):

In microbiological testing, this is the minimum level of growth that can be detected with confidence. If a result is reported as "None Detected", it means any visible growth was below this limit.

Limit of Quantitation (LOQ):

In analytical chemistry testing, this is the minimum level of the desired analyte that can be quantified with confidence. If a result is reported as less than LOQ, it means any detected amount was too small to report an exact number.

Under accreditation number 77504, ARL is an ISO/IEC 17025:2017 Accredited Laboratory. Uncertainty data for ISO-scoped methods is available upon request. Certificate and scope are also available upon request.

Form: aricoa031201a Report: 683741 Printed on: 6/23/2023 4:56:11 PM

experience • professionalism • value

Released by: Spencer Ashby

Spancer

Date Released: 6/23/2023

Utah Department of Agriculture and Food **Division of Laboratory Services** 4451 South 2700 West Taylorsville, Utah 84129 (801) 816-3840

CERTIFICATE OF ANALYSIS

Sample Information

UDAF Lab#	HP23184-1	Issue Date:	07/12/2023
Client:	PurHealth Labs	Client Email:	jgunderson@purhealthla bs.com
Producer:	PurHealth Labs	Sample Type:	Liquid Suspension
Description:	7 Energy Shot 2oz		
Batch/Lot Number:	23180	Date Received:	07/03/2023
Date Collected:	06/28/2023	Collected By:	Self-Submitted

Notes:

Testing Summary

Analysis:	Testing Date:	Status:	Notes:
Cannabinoids	07/12/2023	PASS	
	Application and the second sec		
			AND

Approved By:

Date: 07/12/2023

Brandon Forsyth, Ph.D State Chemist

The results reported herein pertain only to the indicated sample and may not be used as an endorsement of a product. The results are given under applicable provisions of the Utah Code and represent a true statement of the outcomes of the analyses conducted on the sample received by the laboratory. This report may not be reproduced, except in its entirety. © 2023 All Rights Reserved.

Utah Department of Agriculture and Food Division of Laboratory Services 4451 South 2700 West Taylorsville, Utah 84129 (801) 816-3840

CERTIFICATE OF ANALYSIS

Cannabinoid Analysis
Status: PASS
Sample ID: HP23184-1
Description: 7 Energy Shot 2oz

Testing Date: 07/12/2023
Reviewed By: Cameron Cheyne

Method: ACL.AM.003 Analysis performed using High-Performance Liquid Chromatography (HPLC-DAD)

Analyte	Abbreviation	CAS Number	% (w/w)	mg/g
Δ9-Tetrahydrocannabidiol	Д9-ТНС	1972-08-03	ND	ND
Δ8-Tetrahydrocannabidiol	Δ8-THC	5957-75-5	ND	ND
Δ9-Tetrahydrocannabinolic acid	THCA	23978-85-0	ND	ND
Δ9-Tetrahydrocannabivarin	THCV	31262-37-0	0.0002%	0.002
Cannabidiol	CBD	13956-29-1	0.0074%	0.074
Cannabidiolic acid	CBDA	1244-58-2	ND	ND
Cannabidivarin	CBDV	24274-48-4	0.0015%	0.015
Cannabinol	CBN	521-35-7	ND	ND
Cannabigerol	CBG	25654-31-3	0.0003%	0.003
Cannabichromene	CBC	20675-51-8	ND	ND
Cannabigerolic acid	CBGA	25555-57-1	ND	ND
Cannablchromenic acid	CBCA	20408-52-0	ND	ND
9(R+S)-∆6a,10a-Tetrahydrocannabidiol	Δ3-ТНС	95720-01-07, 95720- 02-8	ND	ND
(6aR,9R)-∆10-Tetrahydrocannabidiol	(6aR,9R)-Δ10-THC	95543-62-7	ND	ND
(6aR,9S)-∆10-Tetrahydrocannabidiol	(6aR,9S)-Δ10-THC	95588-87-7	ND	ND
Total Cannabinoids			0.01%	0.1
Total THC		***************************************	0.00%	0.0
Total CBD			0.01%	0.1

Unknown Cannabinoid Peak Area:

1.9%

Status:

PASS

Notes:

Total Cannabinoids is calculated as the direct sum of each of the cannabinoid values. Total THC is calculated as $\Delta 9$ -THC + (THCA x 0.877). Total CBD is calculated as CBD + (CBDA x 0.877).

ND = Not Detected, NQ = Not Quantifiable, NT = Not Tested, <LOQ = Below the limit of quantification

The results reported herein pertain only to the indicated sample and may not be used as an endorsement of a product. The results are given under applicable provisions of the Utah Code and represent a true statement of the outcomes of the analyses conducted on the sample received by the laboratory. This report may not be reproduced, except in its entirety. © 2023 All Rights Reserved.

HM: Heavy Mend Analysis 197-10-131 nulyst: JFD 3 3 2018

This test method was performed in accordance with the requirements of ISO/IEC 17025. These results relate only to the feat article listed in this report. Reports may not be reproduced except in their energy. and the second s

25691-HAJ			55	100	Use	Limits 2	4.5	S. A. S. S.
Symbol	Motal	Conc.3	Units	MDL	All	Ingestion	Units	Status
As	Arsenio	ND	ne/kg		200	1500	µe/kg	PASS
Cd	Cadmium	3	µg/kg	1	200	500	µg/kg	PASS
Hg	Mercury	3 7	ug/kg	2	100	1500	µg/kg	PASS
Pb	Lead	37	pg/kg	2	500	1000	µg/kg	PASS

MB1: Meropiological Consominants (W1-14-19)

Analyzi Alyron

Test Daic: 3 29 2016

This test method was performed in accordance with the requirements of ISO/IEC 17025. These results retain only to the test article listed in this report. Reports may not be reproduced except in their entirety.

15497_3010

Symbol	Analysis	Results	Units	Limits*	Status
AC	Total Aerobic Bacterial Count	<100	CFU/B	10,000 CFU/g	PASS
CC	Total Coliform Bacterial Count	<100	CFU/s	100 CFU/g	PASS
EB	Total Bile Tolerant Gram Negative Count	<100	CFU/s	100 CFU/g	PASS
YM	Total Yeast & Mold	<100	CFU/g	1,000 CFU/g	PASS

Note: All recorded Idiombiological tests are within the established limits.

81 B2: Pathozenk Barze. io Contamuna. is W1-10-101

Analyst: mar

1-st Date: 3 29 2018

This test method was performed in accordance with the requirements of ISO/IEC 17025. These results relate only to the test article listed in this seport. Reports may not be reproduced except in their entirety

25491-4EDZ

Test ID	Analysis	Tesults	Units	Limits*	Status
 25691-ECPT	E. coli (0157)	Negative	NA	Non Detected	PASS
25691-SPT	Salmonella	Vegative	NA	Non Detected	PASS

Note: All recorded pethogenic bacteris tests passed.

¹⁾ MD None detected to Levens Limits of Detection (LLD)

'1) MA Dept. of Public Steatth: Protocol for MMI and MIPS, Excited 4(a) for all proceeds.

3)USP exposure limits based on delity oral desing of 1g of concentrate for a 110 fb person.

Ten Day 3 19 70 le

Analyst: KSB PST: Pesthelice Analysis (WI-10-11)

The client sample was analyzed for posticides using Liquid Chromatography with Mass Spectrometric detection (LC/MS/MS). The method used for sample prep was based on the European method for posticide analysis (EN 15662)

25691-381

25691-163					2 1 4	236
Analyte	CAS	Result	Units	LLD	Limits (ppb)	Ştenus
Abamecin	71751-41-2	ND	ppb	0.2	10	PASS
Azoxystrobin	131860-33-8	ND	ppb	0.1	10	PASS
Bifenazate	149877-41-8	ND	ppo	0.1	10	PASS
Bifenthrin	82657-04-3	ND	ppo	0.2	10	PASS
Cyfluthrin	68359-37-5	ND	ppb	0,5	10	100
Caminozido	1596-84-5	ND	ppb	10	10	PASS
Dichlerves	62-73-7	ND	ppb	3	10	
Etmazole	153233-91-1	ND	ppb	0.1	10	PASS
Fenoxycarb	72490-01-8	ND	ppb	0.1	10	PASS
imazalil	35554-44-0	ND	ppb	0.1	10	PASS
I midacloprid	138261-41-3	ND	ppb	0.1	10	PASS
Myclobutanil	88671-89-0	ND	ppb	0.1	10	PASS
Paciobutrazol	76738-62-0	ND	ppb	0.1	10	PASS
Piperonyl butoxide	51-03-6	ND	ppb	0.1	10	PASS
Pyrethrin	8003-34-7	ND	ppb	0.1	10	PASS
Spinosad	168316-95-8	ND	ppb	0.1	10	PASS
Spiromesifen	283594-90-1	ND	ppb	0.1	10	PASS
Spirotetramat	203313-25-1	ND	ppb	0.1	10	PASS
Trifloxystrobin	141517-21-7	ND	ppb	0.1	10	PASS

[&]quot;Testing first's established by the Massachments Department of Public Health. Protocol for Sampling and Analysis of Finished Medical Marijuans Products and Marijuans-Infraed Products for Vizzachments Registered Medical Marijuans Dispensaries. Exhibit 5. ND indicates "some detected" above the lower limit of detection (LLD). Analyses marked with (*) indicate analyses for which no recovery was observed for a pro-spilod matrix sample.

Text. Date: 3.39.2018

Analus, CIH I'C; Analysis of Valuate Orante Compounds /WI-10-97]

the client sample was amayzed by Head-Suzes Gas Chromatography (HS-QC). The collected data was compared to data collected for certified reference standards at anown concentrations.

25691-34

	by deli		11 3 3 3 3
CAS	Amount 1	Limit 2	Status
74-98-6	ND	N/A	
106-97-8	ND.	5,000 upm	PASS
57-56-I	ND	3.000 ppm	PASS
64-17-5	ND	3.000 ppm	PASS
Ji.	. ND	N/A	100
67-64-1	ND	5.000 ppm	PASS
67-63-0	ND	5,000 ppm	PASS
79-29-8	ND	N/A	1
96-14-0	ND	N/A	•
110-54-3	ND	290 ppm	PASS
71-23-8	ND	5,000 ppm	PASS
108-88-3	ND	890 ppm	PASS
	74-98-6 106-97-8 57-56-1 64-17-5 67-64-1 67-63-0 79-29-8 96-14-0 110-54-3 71-23-8	74-98-6 ND 106-97-8 ND 57-56-1 ND 64-17-5 ND 67-64-1 ND 67-63-0 ND 79-29-8 ND 96-14-0 ND 110-54-3 ND	74-98-6 ND N/A 106-97-8 ND 5,000 ppm 57-56-1 ND 3.000 ppm 64-17-5 ND 5,000 ppm N/A 67-64-1 ND 5,000 ppm 67-63-0 ND 5,000 ppm 79-29-8 ND N/A 110-54-3 ND 290 ppm 71-23-8 ND 5,000 ppm

END OF REPORT

ND = None detected above 5 ppm.
 In ppm, based on USP recommended limits for residual solvents, adopted by the Manachusetts Department of Public Health on 3/31/16.
 Butane/Propage limits are based on limits established for state of Colorado.